Роль высших водных растений в улучшении качества воды.
Биоплато— Управлять качеством воды в водоемах по содержанию в ней биогенных элементов можно с использованием высшей водной растительности (ВВР или макрофиты).
В формировании качества воды важную роль играют высшие водные растения: тростник, камыш, рогоз, рдест, сусак и др. Известно их применение для доочистки сточных вод предприятий легкой, металлургической, угольной промышленности, животноводческих комплексов, бытовых сточных вод. Поглощая значительное количество биогенных элементов, высшие водные растения снижают уровень эвтрофикации водоемов. Они усваивают и перерабатывают различные вещества (фенолы, ДЦТ), способствуя осаждению взвешенных и органических веществ; насыщают воду кислородом; создают благоприятные условия для нереста рыб и нагула молоди; интенсифицируют очистку воды от тяжелых металлов и нефтепродуктов за счет нефтеокисляющих бактерий.
В присутствии высших водных растений в 3-5 раз быстрее разлагается нефть. Жизнедеятельность макрофитов способствует всплыванию нефтепродуктов, осевших на дно, и их разрушению. Даже при непрерывном поступлении в водоем нефтепродуктов в зарослях высших водных растений они присутствуют в значительно меньших количествах, чем на открытых плесах. Наиболее перспективны для очистки воды от нефти — камыш озерный и рогоз узко- и широколистный. Камыш озерный интенсивно очищает воду и от фенолов. Одно растение камыша массой 100 г способно извлечь из воды до 4 мг фенола. Помимо фенола поглощаются и его производные (пирокатехин, резорцин, ксилол и др.
В процессах фотосинтетической аэрации макрофиты играют не меньшую роль, чем фитопланктон. Они способны накапливать в своем теле различные элементы. Так, сусак способен накапливать 7,52 мг фосфора на 1 г сухой массы. Камыш активно аккумулирует марганец, ирис — кальций, осока — железо, ряска — медь. В процессе минерального питания высшие водные растения в природных условиях поглощают и утилизируют в своих органах значительное количество веществ. Высшие водные растения способны аккумулировать радионуклиды (цезий — 137, стронций — 90, кобальт — 60). Высшие водные растения утилизируют азот сточных вод предприятий по производству минеральных удобрений. Извлечение азота из сточных вод биологических прудов с помощью высших водных растений улучшает качество воды.
Не менее важна роль высших водных растений в регуляции «цветения» воды, поскольку заросшие макрофитами участки водоемов не «цветут». Это объясняется конкуренцией за биогенные элементы, поглощаемые высшими водными растениями. Известно, что тростник обогащает кислородом не только воду, но и почву, на которой растет, способствуя усилению процессов окисления. Кислород циркулирует по полым стеблям и проходит в корни по воздухопроводящим побегам, а густые мочковатые водно-воздушные корни растений, как своеобразный механический фильтр, задерживают взвешенные в воде частицы и очищают от них воду.
Очень ценна способность тканей тростника детоксицировать различные ядовитые соединения. Достаточно высокие концентрации аммиака, фенола, свинца, ртути, меди, кобальта, хрома не сказываются заметно на его росте и развитии. Тростник является также прекрасным субстратом для развития различных видов прикрепленных водорослей, участвующих в формировании качества природных вод. В обрастаниях высших водных растений в основном встречаются диатомовые, зеленые, в меньшей мере — синезеленые и другие водоросли. В большом количестве здесь обнаружены грибы, азотобактер, а также бактерии, способные разлагать крахмал и клетчатку. Вместе с водорослями эти микроорганизмы активно участвуют в самоочищении водоемов.
Доказано, что высшие водные растения способны извлекать из воды относительно большие количества урана, радия, тория. В растениях тростника, произрастающего на участках, которые подвергаются воздействию загрязненных вод, накапливается к концу вегетации примерно в 4 раза больше железа, кальция — в 100 раз, магния — в 1,2, азота — в 1,5, фосфора — в 1,3 раза больше, чем в растениях, не подвергающихся влиянию сточных вод. Большую роль в регуляции процессов размножения водорослей играет не только конкуренция за биогенные элементы, но и метаболиты высших водных растений, проявляющие фитонцидные свойства и угнетающие развитие водорослей.
Макрофиты в процессе фотосинтеза насыщают воду кислородом, а также затеняют нижележащие слои воды, создавая неблагоприятные условия для жизнедеятельности синезеленых водорослей и образования первичной продукции фитопланктона.. При этом заметно изменялся химический состав и физические свойства сточных вод: снижалась окисляемость, отсутствовали все формы азота, значительно уменьшалось содержание фосфатов, появлялся растворенный кислород. Сточная вода после культивирования на ней этого растения становилась прозрачной и без запаха.
Таким образом, высшие водные растения могут играть существенную роль в снижении численности водорослей, в первую очередь, в небольших водоемах, подверженных «цветению» при эвтрофировании.
Устройство Биоплато:
Биоплато обычно расположен в месте притока воды в оcновной пруд, вода подается фонтанными или прудовыми насосами из придонного слоя водоема и через напорные шланги поступает на вход биоплато.
Биоплато выполняется в виде продолговатого небольшого водоема (до 1/3 размера основного водоема) глубиной от нескольких сантиметров до метра, расположенного чуть выше основного водоема. Дно гидроизолируется с помощью пленки для пруда, сверху кладется слой геотекстиля. В качестве засыпного материала чаще всего используется гравий (из экономических соображений), в который пересаживаются тростник, камыш, рогоз, рдест, сусак, ирис. Часто используются варианты без наполнителя, с поверхностным течением, растения высаживаются вместе с грунтом.
Вода с придонными отложениями, поступающая из основного водоема с помощью насоса для грязной воды приносит с собой большое количество органики, которая является питательной средой для высших водных растений. Протекая через корневую систему растений, вода обогащается кислородом, очищается механически и попадет в водоем через излив.
Существует много вариантов исполнения очистного водоема:
- с поверхностным течением через заросли растений;
- c прокачиванием воды через наполнитель (лавагранулят, цеолит, гравий…) с высшими водными растениями снизу вверх;
- c прокачиванием воды через наполнитель (лавагранулят, цеолит, гравий…) с растениями сверху вниз;
но результат использования всех вариантов один — вода в вашем пруду становится лучше
Пруд зимой
Зимой водоему угрожают промерзание и замор. Чтобы пруд со всеми обитателями не промерз до дна, он должен быть достаточно глубоким (в условиях средней полосы России — минимум 0,8 м). Из не столь глубоких водоемов растения и рыб на зиму следует занести в помещение. Замор в замерзшем пруду случается из-за нехватки кислорода и избыточного количества сероводорода, при этом вода приобретает характерный тухлый запах, и большинство животных погибает. Обычной проруби, как правило, не достаточно. Следует применять специальные аэраторы и компрессоры, дающие возможность снабжать придонные слои воды кислородом.
Экспериментальная часть
Исследование условий содержания водного гиацинта для очистки сточных вод в условиях Приднестровья:
Республиканским НИИ экологических исследований была составлена программа и начаты практические исследования по применению эйхорнии для глубокой очистки сточных вод.
Из литературных источников мы узнали, что эйхорния в естественных условиях произрастает в странах с тропическим климатом, то есть при температуре 16-32°С. Поэтому нам было интересно узнать, как она перенесет зиму в климатических условиях ПМР.
Для этой цели одна часть растений была помещена на вторичном отстойнике Тираспольских очистных сооружений МУП ТУВКХ г. Тирасполя. В ходе наблюдений было установлено, что растения не только успешно перезимовали, но и не прекратили своего вегетативного размножения. Заложили 200 дочерних растений, на 25 февраля растений было уже 400 штук, на 22 марта — 600 штук крупных особей.
Другая часть крупных растений, где осенью наблюдалось активное цветение и семяобразование была оставлена в открытой емкости. При понижении температуры атмосферного воздуха до -3°С все растения погибли.
Третью часть растений поместили в ваннах в лаборатории. Для эйхорнии необходимо яркое освещение (световой день должен быть продлен до 12 часов). Растение сохранилось, но такое сохранение растений экономически нецелесообразно.
Применение эйхорнии для очистки сточных вод:
За последние 10-летия исследователи, заинтересовавшиеся эйхорнией отмечали у этой древней представительницы высшей водной растительности (ВВР) совершенно неуемный аппетит и полное равнодушие к меню, просто маниакальная прожорливость: прекрасный реликт съедает любой загрязнитель. Появились данные, что эйхорнии под силу конкурировать с современными инженерными сооружениями по очистке сточных вод.
В связи с этим возникла актуальная возможность использования водного гиацинта для доочистки сточных вод различных хозяйственных объектов в ПМР.
С целью постановки экспериментов по очистке сточных вод, растения эйхорнии были перевезены из прудов г. Краснодара на очистные сооружения МУП ТУВКХ г. Тирасполя, где проводились исследования.
Исследования проводились в 2 этапа:
1 этап: с августа по сентябрь 2002 года;
2 этап: с марта по апрель 2003 года.
Отбор проб проводился ежедневно.
В целях определения эффективности очистки эйхорнией сточных вод различной степени загрязненности было рассажено по 50 растений в емкости с сточной водой с различным содержанием химических компонентов:
1. В сточные воды поступающие на очистные сооружения;
2. В сточные воды после механической очистки (первичные отстойники);
3. В сточные воды после биологической очистки (вторичные отстойники);
4. В избыточный активный ил и в сооружения с сырым осадком.
Наиболее важным этапом очистки сточных вод является аэрация кислородом воздуха и биологическая доочистка воды микроорганизмами активного ила. Эта стадия очистки требует наибольших финансовых и энергетических вложений. Наши исследования показали целесообразность применения водного гиацинта именно на этом этапе.
Поэтому для повторных экспериментов в 2003 году была использована вода идущая а аэротенк, то есть после механической очистки.
Поставленный нами эксперимент по очистке сточных вод на базе очистных сооружений МУП УВКХ г. Тирасполя показал, что после очистки сточных вод эйхорнией, содержание в воде ингредиентов, по которым проводился анализ значительно уменьшилось. Результаты очистки воды было видно «невооруженным глазом»: вода стала прозрачной, специфический запах нечистот исчез. Причем эффективность очистки выше, чем при использовании обычных технологий.
Как видно из таблицы 1 наиболее эффективно эйхорния очищает воду от фосфатов, их содержание уменьшается в 5 раз; нитратов — в 25 раз; азота аммонийного — в 7 раз; поточных микроорганизмов — в 4 раза.
В меньшей степени эйхорния поглощает хлориды и сульфаты (степень очистки до 60%), а также соли жесткости (степень очистки до 37%).
Одновременно ХПК уменьшается на 80%, а БПК — на 53%.
При сравнении результатов испытаний эйхорнии на I этапе (летне-осеннее время) и на II этапе (весеннее время) видно, что во втором случае эффективность очистки заметно (на 10-20%) ниже, что можно объяснить снижением эффективности фотосинтеза и низкими температурами воздуха в весеннее время.
Исследования по содержанию и размножению эйхорнии на прудах очистных сооружений:
Эксперимент начавшийся 2 августа 2002 года проходил в нормальных условиях, так как темпера воды и воздуха была оптимальной для роста и размножения эйхорнии.
В отстойниках, где вода была значительно чище и меньше ила, растения чувствовали себя хуже. Поэтому пришлось их пересадить в более загрязненный I отстойник. Следовательно, для нормальной вегетации эйхорнии необходим не только подходящий температурный режим, но и обильная питательная среда (активный ил и др.). Интересно, что эйхорния, в зависимости от степени загрязненности сточных вод, в которых она произрастает, различается по внешним морфологическим признакам. Так, эйхорния, растущая на прудах в относительно чисто воде, имеет более развитую корневую систему, с помощью которой она перерабатывает ил.
На основе визуальных наблюдений было видно, что растение успешно адаптировались к данным условиям, так как оно хорошо росло и размножалось.
Последующее похолодание вызвало необходимость часть растений перенести в камерные условия, а часть оставить в отстойниках и накрыть их пленкой (типа теплица плавающая).
Эйхорния, оставшаяся в камерных условиях развивалась достаточно хорошо. Как следует из результатов эксперимента, содержание эйхорнии в камерных условиях при температуре воды 20-30°С, воздуха 20-36°С, регулярной подкормке растений через каждые два дня активным илом, является оптимальным для успешной вегетации и размножения эйхорнии.
Использование зеленой массы эйхорнии после очистки сточных вод:
Кроме сточной воды исследовали растения одно-, двух- и трехмесячного возраста с целью определения их качества в виде кормов травяных по ГОСТ 18691-88. Было установлено содержание сырого протеина от 30 до 40%, сырой клетчатки от 8,3 до 11,4%, что соответствует нормам 1-го класса. Растения при проверке на токсичность показали содержание ниже ПДК, что позволяет сделать вывод о возможности применения растений после сушки и соответствующей обработки в качестве добавки к кормам животным и птицам при разработке рациона их питания.
Применение тростника обыкновенного и рогоза узколистного для очистки сточных вод:
Крупные гидрофиты тростник и рогоз и др. способны извлекать из воды в больших количествах биогенные элементы — N, P, Ca, K, Na, S, Fe — и этим значительно снижать степень эвтрофикации водоемов. [1]
Густая зрелая заросль тростника может аккумулировать в урожае биомассы на 1 га до 6 т различных минеральных веществ, в том числе К — 859 кг, N (азот) — 167 кг, Р (фосфор) — 122 кг, Na — 451 кг, S — 277 кг и кремния — 3672 кг, что указывает на специфическую потребность тростника в этих элементах, придающих прочность стеблю и другим тканям.
Загрязненные сточные воды после механической очистки, идущие на аэротэнки, закачивались в пруд-отстойник обсаженный совместно тростником и рогозом (исследование проводилось в августе 2002 года). Предварительно делали химический анализ сточной воды на наиболее важные химические элементы: хлориды, сульфаты, взвешенные вещества, фосфаты, нитраты и патогенные микроорганизмы (Coli-индекс)
Через 10 дней брали пробы воды из пруда-отстойника и делали соответствующие химические анализы после отчистки. Затем рассчитывали эффективность очистки.
Наиболее эффективно тростник и рогоз при совместном присутствии очищают воду от взвешенных веществ, их содержание уменьшается в 21 раз. Эффективность очистки от хлоридов, сульфатов, фосфатов, нитратов и патогенных микроорганизмов составляет в среднем 50%.
Выводы:
1) Применение эйхорнии в климатических условиях ПМР возможно только в безморозный период при температуре воды от 20 до 27 °С;
2) Морфологические признаки растений эйхорнии различаются в зависимости от степени загрязнения воды, вероятно образуются различные экотипы вида;
3) Эффективность очистки воды эйхорнией в летне-осенний период значительно выше, чем в весенний период, что можно объяснить более высокой степенью вегетации растения;
4) Оптимальными условиями для успешной вегетации и размножения эйхорнии являются камерные условия (вторичный отстойник) при температуре воды от 20 до 31°С, воздуха от 20 до 36 °С и регулярной подпитки растений через 2 дня активным илом;
5) Наиболее эффективно эйхорния очищает сточную воду от хлоридов, сульфатов, нитратов, азота аммонийного и патогенных микроорганизмов, одновременно значительно (в 5 раз) снижается ХПК и в 2 раза снижается БПК.
6) Эйхорния нейтрализует поглощенные токсичные ингредиенты, ее зеленая масса после очистки содержит ценные питательные вещества и пригодна на корм сельскохозяйственным животным и птице.
7) Тростник и рогоз при совместном присутствии в водоеме наиболее эффективно очищают воду от взвешенных веществ (степень очистки — 95%), а также различных солей: хлоридов, сульфатов, фосфатов, нитратов и патогенных микроорганизмов (степень очистки примерно 50%).
Заключение:
В данной работе изложены современные научные взгляды и данные о роли высших водных растений в очистке воды. Освящены научные и практические основы фитофильтрационного способа очистки и доочистки промышленных, сельскохозяйственных вод, поступающих в водоемы с помощью водных растений.
Особое значение имеет деминерализация (обессоливание) сточных вод благодаря жизнедеятельности высших водных растений, так как наиболее распространенные биохимические способы очистки сточных вод практически не способны осуществлять этот процесс. А без обессоливания трудно решить задачу замкнутых бессточных систем водообеспечения промышленных предприятий.
Частичная деминерализация воды, достигаемая при помощи растений, — наиболее доступный и наиболее дешевый прием, так как другие способы обессоливания (дестиляция, ультрофильтрация и т.п.) связаны с затратой большого количества энергии, очень дороги, экономически невыгодны и могут применяться лишь в некоторых случаях при сравнительно небольших объемах регенерируемой воды.
Многочисленные литературные данные о возможностях применения ВВР в отчистке сточных вод полностью подтвердились нашими исследованиями в условиях Приднестровья.
Уничтожение эйхорнией практически всех болезнетворных микроорганизмов позволит отказаться от неизбежной на последнем этапе обработки стоков хлорной водой. Рабочие не будут травить себя вредными испарениями хлора. А его токсичные соединения не попадут в реку Днестр, на берегах которой любят отдыхать горожане.
Санатории, дома отдыха, детские лагеря возле запущенных прудов и озер (плавательные бассейны и другие водоемы) имеют прекрасную перспективу привести их в порядок за весенние месяцы. Еще до наступления лета эйхорния способна любую загрязненную воду довести до санитарных норм качества водоемов I категории.